DNA Damage Caused by Polycyclic Aromatic Hydrocarbons: Mechanisms and Markers
نویسندگان
چکیده
Polycyclic Aromatic Hydrocarbons (PAHs) are a group of chemicals that occur naturally in coal, crude oil and gasoline. Incomplete combustion of organic material results in emission of PAHs (ATSDR, 1996). These molecules consist of two or more aromatic rings fused in linear, angular or cluster arrangements (Fig. 1) and by definition are composed of hydrogen and carbon. PAHs containing up to six fused aromatic rings are often known as "small" PAHs while those containing more than six aromatic rings are called "large" PAHs. As pure chemicals, these compounds are colorless, white or pale yellow solids. Their physicochemical properties, vapor pressure and solubility vary according to their molecular weight. PAHs possess a highly characteristic UV absorbance spectra although some may be fluorescent (Fetzer & Biggs, 1994). PAHs are ubiquitous and persistent as a consequence of natural (forest fires and volcanic eruptions) and human activities (Jongeneelen, 2001). PAHs may distribute in water, soil and the atmosphere according to different weather and geographical factors. Although industrial activity such as coke manufacturing or asphalt production are major contributors to PAH emissions, incineration, power generation and several mobile sources also emit a considerable amount of PAHs. Significant sources of PAHs in surface waters include deposition of airborne PAHs, municipal wastewater discharge, urban storm-water runoff, and industrial waste. Food groups that tend to have the highest levels of PAHs include charcoal broiled or smoked meats, leafy vegetables, grains, and vegetable fats and oils (Yu, 2005). Therefore, workers of these industries and the general population are continually exposed to different concentrations of PAH mixtures. The Agency for Toxic Substances and Disease Registry (ATSDR) has grouped 17 PAHs according to their health effects (ATSDR, 1996). The United States Environmental Protection Agency (EPA) has designated 28 PAH compounds as priority pollutants (EPA, 2009) (Table 1). The International Agency for Research on Cancer (IARC) has classified some these compounds as carcinogenic (group 1) or likely carcinogenic (group 2A) to humans, for example benzo[a]pyrene and dibenz[a,h]anthracene, respectively (IARC, 2010). Finally, the National Institute of Standards and Technology has created a classification of PAHs according to their symbols, molecular formulas, class and notation among other properties (NIST, 2010). The most common mechanism of carcinogenesis induced by PAHs is DNA damage through the formation of adducts. Alternatively, in the presence of reactive oxidative species, DNA
منابع مشابه
Association of Exposure to Polycyclic Aromatic Hydrocarbons with Inflammation, Oxidative DNA Damage and Renal-pulmonary Dysfunctions in Barbecue Makers in Southern Nigeria
Background: Multiple organ dysfunctions have been linked to exposure to polycyclic aromatic hydrocarbons (PAH) and oxidative stress (OS), oxidative DNA damage, and inflammatory response to PAH have been implicated. The biomarkers of OS (malondialdehyde (MDA), total plasma peroxide (TPP), total antioxidant capacity (TAC), glutathione (GSH), nitric oxide (NO), oxidative stress index (OSI)); 8-hy...
متن کاملInteractions by Carcinogenic Metal Compounds with DNA Repair Processes
Some metal compounds, including arsenic, beryllium, cadmium, chromium and nickel have long been recognized as human and animal carcinogens, while for other as antimony, cobalt, lead and vanadium their carcinogenic action are probable or possible. Except chromium (VI), carcinogenic metals are only weak mutagens in mammalian cells and often inactive in bacterial assays. Since the mutagenicity in ...
متن کاملOGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage
Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...
متن کاملChronic polycyclic aromatic hydrocarbon exposure causes DNA damage and genomic instability in lung epithelial cells
Cell exposure to atmospheric polycyclic aromatic hydrocarbons (PAHs) is closely associated with DNA damage and genomic instability. We assessed the mechanisms of chronic and acute PAH exposure-induced genotoxicity in two human lung epithelial cell lines, A549 and NC-H1975. We sampled atmospheric PAHs at the Xixi Campus, Zhejiang University in Hangzhou, China during August (non-haze episode) and...
متن کاملPhotoirradiation of polycyclic aromatic hydrocarbons with UVA light - a pathway leading to the generation of reactive oxygen species, lipid peroxidation, and dna damage.
Polycyclic aromatic hydrocarbons (PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which PAHs induce genotoxicity. Although the metabolic activation of PAHs leading to biological activities has been well studied, the photo-induced activation pathway has seldom reported. In this paper, we review the study of photoirradiation...
متن کاملLymphocyte DNA damage in Turkish asphalt workers detected by the comet assay.
Asphalt has a highly complex structure and it contains several organic compounds including polycyclic aromatic hydrocarbons and heterocyclic compounds. In this study, comet assay was used to detect the DNA damage in blood lymphocytes of 30 workers exposed to asphalt fumes and 30 nonexposed controls. This is the first report on Turkish asphalt workers' investigated DNA damage using the alkaline ...
متن کامل